quarta-feira, 28 de novembro de 2012

EXERCÍCIOS RESOLVIDOS DE FÍSICA


Questões - Termometria
Escalas Termométricas
(1) Um turista brasileiro sente-se mal durante uma viagem à Nova Iorque. Ao ser examinado em um hospital local a enfermeira lhe diz que sua temperatura no momento era 105°, mas que ele deveria ficar tranquilo, pois já havia baixado 4°. Após o susto, o turista percebeu que sua temperatura havia sido medida em uma escala Fahrenheit. Qual era a sua temperatura anteriormente e qual sua temperatura atual?
Anterior: 105°+4°=109°F

Atual: 105°F

(2) Um astrônomo analisa um buraco negro no espaço. Após muitos estudos ele chegou a conclusão que este corpo celeste tinha temperatura de 10K. Qual a temperatura do buraco negro em escala Celsius?

(3) Um estudante de física criou uma escala (°X), comparada com a escala Celsius ele obteve o seguinte gráfico:
a. Qual a equação de conversão entre as duas escalas?
b. Qual a temperatura do corpo humano (37°C) nesta escala?

a.

b. 

Questões - Calorimetria
Calor
(4) Para derreter uma barra de um material w de 1kg é necessário aquecê-lo até a temperatura de 1000°C. Sendo a temperatura do ambiente no momento analisado 20°C e o calor específico de w=4,3J/kg.°C, qual a quantidade de calor necessária para derreter a barra?

(5) Um bloco de ferro de 10cm³ é resfriado de 300°C para 0°C. Quantas calorias o bloco perde para o ambiente?
Dados: densidade do ferro=7,85g/cm³ e calor específico do ferro=0,11cal/g.°C
O primeiro passo é descobrir a massa do bloco, sabendo sua densidade e seu volume (é importante prestar bastante atenção nas unidades de cada grandeza).
Conhecendo a massa, podemos calcular a quantidade de calor do corpo:
Como Q<0, a transferência de calor acontece no sentido do bloco para o meio ambiente (libera calor).

(6) Qual a quantidade de calor absorvida para que 1L d'água congelado e à -20°C vaporize e chegue a temperatura de 130°C.
Dados:
Calor latente de fusão da água: L=80cal/g
Calor latente de vaporização da água: L=540cal/g
Calor específico do gelo: c=0,5cal/g.°C
Calor específico da água: c=1cal/g.°C
Calor específico da água: c=0,48cal/g.°C
Densidade da água: d:1g/cm³
1L=1dm³=1000cm³

m=d.V
m=1000g


Trocas de calor
(7) Um bloco de uma material desconhecido e de massa 1kg encontra-se à temperatura de 80°C, ao ser encostado em outro bloco do mesmo material, de massa 500g e que está em temperatura ambiente (20°C). Qual a temperatura que os dois alcançam em contato? Considere que os blocos estejam em um calorímetro.

(8) Em uma cozinha, uma chaleira com 1L de água ferve. Para que ela pare, são adicionados 500mL de água à 10°C. Qual a temperatura do equilíbrio do sistema?
Qualquer quantidade de água que esteja fervendo encontra-se à temperatura de 100°C, se a temperatura for superior a esta, não haverá água líquida, apenas vapor.

Questões - Fundamentos de Óptica
Luz - Comportamento e Princípios:
9. A distância média entre a Terra e o Sol é de 150.000 km. Quanto tempo a luz demora para chegar à Terra? (Considerando c = 300.000 km/s).
O primeiro passo é entender o deslocamento da luz. Como c é uma velocidade constante, o movimento deve ser uniforme, ou seja:
Com isto, basta substituir os valores dados no exercício:
Ainda podemos expressar este tempo em minutos:
Portanto, a luz demora aproximadamente 8 minutos e 20 segundos para viajar do Sol até a Terra.

10. Quando as missões espaciais chegaram à Lua foram deixados espelhos em sua superfície para que pudessem ser feitos experimentos com eles. Suponhamos que, usando um destes espelhos, você deseje descobrir a distância entre a Terra e a Lua. É usado, então, um feixe de laser que é captado após 2,54 segundos. Desconsiderando os movimentos da Terra e da Lua, e usando c = 300.000 km/s, qual a distância entre o nosso planeta e o seu satélite natural?
Como no exercício anterior, a luz descreve um movimento uniforme, logo:
O tempo necessário para que o laser atinja os receptores é equivalente à viagem de ida e volta da luz, logo, precisamos usar a metade deste tempo, ou seja, 1,27 segundos:
11. Ano-luz é a medida de distância usada em astronomia que se refere ao espaço percorrido pela luz durante um ano terrestre. Considerando c = 300.000 km/s e 1 ano = 365,25 dias, quantos quilômetros equivale a um ano-luz?
Precisamos converter a unidade de tempo para segundos e, para isso, precisamos saber que:
1 minuto = 60 segundos
1 hora = 60 minutos = 3600 segundos
1 dia = 24 horas = 1440 minutos = 86400 segundos
1 ano = 8766 horas = 525960 minutos = 31557600 segundos

Sombra e Penúmbra
12. Uma pessoa de 1,9 m de altura está em pé ao lado de um prédio. A sombra do prédio projetada pela luz solar é de 90 m enquanto a da pessoa é de 9 m. Qual a altura do prédio?
Começamos o problema pensando nos raios solares, uma vez que devem incidir paralelamente entre si. A pessoa, a sombra e o raio de luz formam um triângulo retângulo assim como o triângulo formado pelo prédio, sombra e raio de luz; os ângulos formados devem ser os mesmos. Assim podemos escrever uma semelhança de triângulos:
Podemos isolar a altura do prédio e calculá-la em função dos dados conhecidos:
13. Uma lâmpada é usada para iluminar uma sala de 3 m de altura entre o chão e o teto. A uma altura de 1 m do chão está uma mesa quadrada com cada lado medindo 40 cm. Supondo que a lâmpada seja uma fonte puntual localizada exatamente ao centro da mesa, qual a área da sombra da mesa?
Nesta situação podemos analisar a distância entre o centro da mesa e uma das extremidades. Ficamos com a diferença entre a mesa e o teto igual a 2 m e a largura média da mesa igual a 20 cm. Assim, encontraremos o valor de x e com isto as dimensões da sombra.
Usando semelhança de triângulos:
Sabemos que esta é a metade da dimensão da sombra, logo, a dimensão total projetada é de 0,6 m, de onde podemos calcular a área da sombra:

Câmara escura de orifício
14. Um objeto de 20 cm de tamanho é colocado a uma distância de 4 m de uma câmara com uma orifício cuja dimensão entre a entrada e o anteparo é de 50 cm. Qual o tamanho do objeto projetado no anteparo? Ele estará invertido?
Primeiramente devemos interpretar os dados do problema. A distância entre o objeto e a entrada da câmara é p, a distância entre a entrada e o anteparo é p' e o tamanho do objeto é o. Assim, basta aplicar a fórmula da câmara escura:
Isolando o tamanho da imagem, i:
Basta aplicar os valores, lembrando de utilizar a mesma unidade para todas as grandezas!

Questões - Ondas
Velocidade de Propagação
15. O gráfico abaixo representa uma onda que se propaga com velocidade igual a 300m/s.
Determine:
a) a amplitude da onda;
A Amplitude da onda é dada pela distância da origem até a crista da onda, ou seja:
b) o comprimento de onda;
O comprimento de onda é dado pela distância entre duas cristas ou entre 3 nodos, ou seja:
Como a figura mostra a medida de três "meios-comprimento de onda", podemos calculá-lo:
c) a frequência;
Sabendo a velocidade de propagação e o comprimento de onda, podemos calcular a frequência através da equação:
Substituindo os valores na equação:
d) o período.
Como o período é igual ao inverso da frequência:

Refração das ondas
16. Uma agulha vibratória produz ondas com velocidade de propagação igual a 160m/s e comprimento de onda de 1mm, chegando em uma diferença de profundidade com um ângulo formado de 45° e sendo refratado. Após a mudança de profundidades o ângulo refratado passa a ser de 30°. Qual é a nova velocidade de progação da onda?
E o comprimento das ondas refratadas?
Utilizando a Lei de Snell:
Utilizando a relação com velocidades de propagação, chegamos a equação:
A velocidade da onda refratada será 113,1m/s.
Para calcular o comprimento de onda refratada, utilizamos a Lei de Snell, utilizando a relação com comprimentos de onda:
O comprimento da onda refratada será 0,7mm.
Repare que o resultado aparece em milímetros pois as unidades não foram convertidas para o SI no início da resolução.




Nenhum comentário:

Postar um comentário